A number of recent studies have used surveys of neighborhood informants and direct observation of city streets to assess aspects of community life such as collective efficacy, the density of kin networks, and social disorder. Raudenbush and Sampson (1999a) have coined the term “ecometrics” to denote the study of the reliability and validity of such assessments. Random errors of measurement will attenuate the associations between these assessments and key outcomes. To address this problem, some studies have used empirical Bayes methods to reduce such biases, while assuming that neighborhood random effects are statistically independent. In this paper we show that the precision and validity of ecometric measures can be considerably improved by exploiting the spatial dependence of neighborhood social processes within the framework of empirical Bayes shrinkage. We compare three estimators of a neighborhood social process: the ordinary least squares estimator (OLS), an empirical Bayes estimator based on the independence assumption (EBE), and an empirical Bayes estimator that exploits spatial dependence (EBS). Under our model assumptions, EBS performs better than EBE and OLS in terms of expected mean squared error loss. The benefits of EBS relative to EBE and OLS depend on the magnitude of spatial dependence, the degree of neighborhood heterogeneity, as well as neighborhood's sample size. A cross-validation study using the original 1995 data from the Project on Human Development in Chicago Neighborhoods and a replication of that survey in 2002 show that the empirical benefits of EBS approximate those expected under our model assumptions; EBS is more internally consistent and temporally stable and demonstrates higher concurrent and predictive validity. A fully Bayes approach has the same properties as does the empirical Bayes approach, but it is preferable when the number of neighborhoods is small.